Caracterización de contribuyentes deudores del impuesto vehicular en el departamento de Antioquia.
Date
2023
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Católica Luis Amigó
Abstract
Este trabajo de investigación se centra en el análisis y comprensión del perfil de los contribuyentes deudores del impuesto vehicular en el departamento de Antioquia utilizando técnicas de Aprendizaje Automático (Machine Learning). El objetivo principal es identificar patrones y tendencias de estos contribuyentes, considerando variables socioeconómicas, geográficas y tributarias. La evasión fiscal y la falta de cumplimiento son problemas comunes en muchos países, incluyendo Colombia, y tienen consecuencias económicas y sociales significativas. Por lo tanto, comprender los determinantes del incumplimiento tributario es fundamental para el desarrollo económico, social y financiero del país. El presente proyecto se desarrolla mediante un proceso de investigación que involucra la extracción y transformación de los datos relacionados con los contribuyentes del impuesto vehicular. Se utilizó una técnica no supervisada de clusterización para agrupar a los contribuyentes en categorías con características similares, lo cual ayuda a comprender mejor su comportamiento e identificar los factores que influyen en el incumplimiento del pago del impuesto.El trabajo se lleva a cabo utilizando herramientas de procesamiento de datos y equipos de cómputo adecuados, garantizando la confidencialidad y seguridad de la información proporcionada por la Secretaría de Hacienda de la Gobernación de Antioquia.
La metodología utilizada es CRISP-DM, un proceso estándar para proyectos de minería de datos.En la preparación y procesamiento de los datos, se ejecutaron diversas tareas en diferentes etapas. En la primera fase, llamada Entendimiento y comprensión del negocio, se obtuvieron las bases de datos necesarias y se realizó un inventario de fuentes de información. En la segunda fase, titulada Estudio y comprensión de los datos, se creó un repositorio de código fuente para el análisis exploratorio de los datos. En la tercera fase, denominada Preparación de los datos, se llevó a cabo la limpieza de los datos, la integración de los datos relevantes y la unión de los conjuntos de datos después de su preprocesamiento, finalmente se llegó a la etapa de modelado, donde utilizando el algoritmo de K-Means, se pudieron obtener 5 grupos de deudores. A través del modelo realizado, se evalúan los resultados obtenidos con las características de los diversos clústeres.
Description
Keywords
Categorización, Impuestos, Big Data, Machine Learning